Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1010503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498520

RESUMO

Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.


Assuntos
Chlamydomonas , Chlamydomonas/metabolismo , Ciclo Celular/genética , Divisão Celular , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a RNA/genética , Tamanho Celular
2.
Curr Biol ; 33(23): 5215-5224.e5, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37949064

RESUMO

Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology.1,2,3,4,5,6,7 The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2n daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle. A mitotic sizer couples mother-cell size to division number (n) such that daughter size distributions are uniform regardless of mother size distributions. Although daughter size distributions were highly robust to altered growth conditions, ∼40% of daughter cells fell outside of the 2-fold range expected from a "perfect" multiple fission sizer.7,8 A simple intuitive power law model with stochastic noise failed to reproduce individual division behaviors of tracked single cells. Through additional iterative modeling, we identified an alternative modified threshold (MT) model, where cells need to cross a threshold greater than 2-fold their median starting size to become division-competent (i.e., Committed), after which their behaviors followed a power law model. The Commitment versus mitotic size threshold uncoupling in the MT model was likely a key pre-adaptation in the evolution of volvocine algal multicellularity. A similar experimental approach was used in size mutants mat3/rbr and dp1 that are, respectively, missing repressor or activator subunits of the retinoblastoma tumor suppressor complex (RBC). Both mutants showed altered relationships between Commitment and mitotic sizer, suggesting that RBC functions to decouple the two sizers.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Divisão Celular , Ciclo Celular , Proliferação de Células
3.
Small ; : e2305973, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919096

RESUMO

Wavelength recognition is one of the important functions of photodetectors. However, wavelength recognition of the reported photodetectors generally depends on light intensity, which limits the practical applications. Here, a light intensity-independent wavelength recognition scheme based on vertically stacked transparent photodetectors is reported. By analyzing light intensity attenuation behavior in the multiple stacked photodetectors, the wavelength of incident light can be accurately determined. Due to the high transparency of the detectors, the multiple stacked detectors allow incident light to pass through. Meanwhile, since the attenuation coefficients at different wavelengths are attributed to the detector's absorption characteristics, the intensity of incident light and its wavelength can be determined by analyzing the attenuation coefficients measured through each stacked detector. Consistent wavelength values obtained at different light intensities verify the light intensity-independence of the multistacked detector system.

4.
J Am Chem Soc ; 142(41): 17681-17692, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924464

RESUMO

Conjugated polymers are regarded as promising candidates for dopant-free hole-transport materials (HTMs) in efficient and stable perovskite solar cells (PSCs). Thus far, the vast majority of polymeric HTMs feature structurally complicated benzo[1,2-b:4,5-b']dithiophene (BDT) analogs and electron-withdrawing heterocycles, forming a strong donor-acceptor (D-A) structure. Herein, a new class of phenanthrocarbazole (PC)-based polymeric HTMs (PC1, PC2, and PC3) has been synthesized by inserting a PC unit into a polymeric thiophene or selenophene chain with the aim of enhancing the π-π stacking of adjacent polymer chains and also to efficiently interact with the perovskite surface through the broad and planar conjugated backbone of the PC. Suitable energy levels, excellent thermostability, and humidity resistivity together with remarkable photoelectric properties are obtained via meticulously tuning the conformation and elemental composition of the polymers. As a result, PSCs containing PC3 as dopant-free HTM show a stabilized power conversion efficiency (PCE) of 20.8% and significantly enhanced longevity, rendering one of the best types of PSCs based on dopant-free HTMs. Subsequent experimental and theoretical studies reveal that the planar conformation of the polymers contributes to an ordered and face-on stacking of the polymer chains. Furthermore, introduction of the "Lewis soft" selenium atom can passivate surface trap sites of perovskite films by Pb-Se interaction and facilitate the interfacial charge separation significantly. This work reveals the guiding principles for rational design of dopant-free polymeric HTMs and also inspires rational exploration of small molecular HTMs.

5.
Sci Rep ; 8(1): 16359, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397272

RESUMO

Visibly transparent luminescent solar concentrators (TLSC) have the potential to turn existing infrastructures into net-zero-energy buildings. However, the reabsorption loss currently limits the device performance and scalability. This loss is typically defined by the Stokes shift between the absorption and emission spectra of luminophores. In this work, the Stokes shifts (SS) of near-infrared selective-harvesting cyanines are altered by substitution of the central methine carbon with dialkylamines. We demonstrate varying SS with values over 80 nm and ideal infrared-visible absorption cutoffs. The corresponding TLSC with such modification shows a power conversion efficiency (PCE) of 0.4% for a >25 cm2 device area with excellent visible transparency >80% and up to 0.6% PCE over smaller areas. However, experiments and simulations show that it is not the Stokes shift that is critical, but the total degree of overlap that depends on the shape of the absorption tails. We show with a series of SS-modulated cyanine dyes that the SS is not necessarily correlated to improvements in performance or scalability. Accordingly, we define a new parameter, the overlap integral, to sensitively correlate reabsorption losses in any LSC. In deriving this parameter, new approaches to improve the scalability and performance are discussed to fully optimize TLSC designs to enhance commercialization efforts.

6.
iScience ; 6: 272-279, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30240617

RESUMO

Inorganic lead halide perovskite materials have attracted great attention recently due to their potential for greater thermal stability compared with hybrid organic perovskites. However, the high processing temperature to convert from the non-perovskite phase to the cubic perovskite phase in many of these systems has limited their application in flexible optoelectronic devices. Here, we report a room temperature processed inorganic perovskite solar cell (PSC) based on CsPbI2Br as the light harvesting layer. By combining this composition with key precursor solvents, we show that inorganic perovskite films can be prepared by the vacuum-assist method under room temperature conditions in air. Unencapsulated devices achieved power conversion efficiency up to 8.67% when measured under 1-sun irradiation. Exploiting this room temperature process, flexible inorganic PSCs based on an inorganic metal halide perovskite material are demonstrated.

7.
Adv Sci (Weinh) ; 5(1): 1700484, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375974

RESUMO

Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

8.
ACS Nano ; 12(1): 876-883, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29286630

RESUMO

Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

9.
ACS Omega ; 3(6): 6339-6345, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458816

RESUMO

Inverted perovskite solar cells (PSCs) incorporating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as the hole transport/extraction layer have been broadly investigated in recent years. However, most PSCs which incorporate PEDOT as the hole transport layer (HTL) suffer from lower device performance stemming from reduced photocurrent and low open-circuit voltage around 0.95 V. Here, we report an ultrathin PEDOT layer as the HTL for efficient inverted structure PSCs. The transparency, conductivity, and resulting film morphology were studied and compared with traditional architectures and thicker PEDOT layers. The PSC device incorporating an ultrathin PEDOT layer shows significant improvement in short-circuit current density (J SC), open-circuit voltage (V OC), and power conversion efficiency. Because ultrathin PEDOT layers can be easily obtained by dilution, this study suggests a simple way to improve the PSC performance and provide a route to further reduce the fabrication complexity and cost of PSCs.

10.
Plant J ; 92(6): 1232-1244, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28980350

RESUMO

Chlamydomonas reinhardtii is a unicellular green alga that has attracted interest due to its potential biotechnological applications, and as a model for algal biofuel and energy metabolism. Despite all the advantages that this unicellular alga offers, poor and inconsistent expression of nuclear transgenes remains an obstacle for basic and applied research. We used a data-mining strategy to identify highly expressed genes in Chlamydomonas whose flanking sequences were tested for the ability to drive heterologous nuclear transgene expression. Candidates identified in this search included two ribosomal protein genes, RPL35a and RPL23, and ferredoxin, FDX1, whose flanking regions including promoters, terminators and untranslated sequences could drive stable luciferase transgene expression to significantly higher levels than the commonly used Hsp70A-RBCS2 (AR) hybrid promoter/terminator sequences. The RPL23 flanking sequences were further tested using the zeocin resistance gene sh-ble as a reporter in monocistronic and dicistronic constructs, and consistently yielded higher numbers of zeocin-resistant transformants and higher levels of resistance than AR- or PSAD-based vectors. Chlamydomonas RPL23 sequences also enabled transgene expression in Volvox carteri. Our study provides an additional benchmark for strong constitutive expression of transgenes in Chlamydomonas, and develops a general approach for identifying flanking sequences that can be used to drive transgene expression for any organism where transcriptome data are available.


Assuntos
Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Chlamydomonas reinhardtii/genética , Volvox/genética , Núcleo Celular/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Luciferases/genética , Regiões Promotoras Genéticas/genética , Regiões Terminadoras Genéticas/genética , Transgenes , Regiões não Traduzidas/genética
11.
Elife ; 5: e10767, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27015111

RESUMO

Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a 'counting' mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control.


Assuntos
Divisão Celular , Tamanho Celular , Chlamydomonas reinhardtii/enzimologia , Quinases Ciclina-Dependentes/metabolismo , Chlamydomonas reinhardtii/genética , Quinases Ciclina-Dependentes/genética , Expressão Gênica , Técnicas de Inativação de Genes , Transdução de Sinais
12.
ACS Nano ; 9(2): 1955-63, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25635696

RESUMO

Perovskite solar cells have rapidly advanced to the forefront of solution-processable photovoltaic devices, but the CH3NH3PbI3 semiconductor decomposes rapidly in moist air, limiting their commercial utility. In this work, we report a quantitative and systematic investigation of perovskite degradation processes. By carefully controlling the relative humidity of an environmental chamber and using in situ absorption spectroscopy and in situ grazing incidence X-ray diffraction to monitor phase changes in perovskite degradation process, we demonstrate the formation of a hydrated intermediate containing isolated PbI6(4-) octahedra as the first step of the degradation mechanism. We also show that the identity of the hole transport layer can have a dramatic impact on the stability of the underlying perovskite film, suggesting a route toward perovskite solar cells with long device lifetimes and a resistance to humidity.

13.
J Am Chem Soc ; 136(49): 17116-22, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25405271

RESUMO

The recent breakthrough of organometal halide perovskites as the light harvesting layer in photovoltaic devices has led to power conversion efficiencies of over 16%. To date, most perovskite solar cells have adopted a structure in which the perovskite light absorber is placed between carrier-selective electron- and hole-transport layers (ETLs and HTLs). Here we report a new type of compact layer free bilayer perovskite solar cell and conclusively demonstrate that the ETL is not a prerequisite for obtaining excellent device efficiencies. We obtained power conversion efficiencies of up to 11.6% and 13.5% when using poly(3-hexylthiophene) and 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene, respectively, as the hole-transport material. This performance is very comparable to that obtained with the use of a ZnO ETL. Impedance spectroscopy suggests that while eliminating the ZnO leads to an increase in contact resistance, this is offset by a substantial decrease in surface recombination.


Assuntos
Fontes de Energia Elétrica , Energia Solar , Elétrons , Propriedades de Superfície
14.
Mar Drugs ; 11(8): 2894-916, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23945601

RESUMO

Cyanobacteria (blue-green algae) play profound roles in ecology and biogeochemistry. One model cyanobacterial species is the unicellular cyanobacterium Synechocystis sp. PCC 6803. This species is highly amenable to genetic modification. Its genome has been sequenced and many systems biology and molecular biology tools are available to study this bacterium. Recently, researchers have put significant efforts into understanding and engineering this bacterium to produce chemicals and biofuels from sunlight and CO2. To demonstrate our perspective on the application of this cyanobacterium as a photosynthesis-based chassis, we summarize the recent research on Synechocystis 6803 by focusing on five topics: rate-limiting factors for cell cultivation; molecular tools for genetic modifications; high-throughput system biology for genome wide analysis; metabolic modeling for physiological prediction and rational metabolic engineering; and applications in producing diverse chemicals. We also discuss the particular challenges for systems analysis and engineering applications of this microorganism, including precise characterization of versatile cell metabolism, improvement of product rates and titers, bioprocess scale-up, and product recovery. Although much progress has been achieved in the development of Synechocystis 6803 as a phototrophic cell factory, the biotechnology for "Compounds from Synechocystis" is still significantly lagging behind those for heterotrophic microbes (e.g., Escherichia coli).


Assuntos
Fotossíntese/fisiologia , Processos Fototróficos/fisiologia , Synechocystis/metabolismo , Biotecnologia/métodos , Genoma Bacteriano , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Synechocystis/genética
15.
ACS Nano ; 6(12): 11027-34, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23128145

RESUMO

Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

16.
ACS Nano ; 6(8): 7191-8, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22861684

RESUMO

Pt is a classical catalyst that has been extensively used in fuel cell and solar cell electrodes, owing to its high catalytic activity, good conductivity, and stability. In conventional fiber-shaped solar cells, solid Pt wires are usually adopted as the electrode material. Here, we report a Pt nanoparticle-adsorbed carbon nanotube yarn made by solution adsorption and yarn spinning processes, with uniformly dispersed Pt nanoparticles through the porous nanotube network. We have fabricated TiO(2)-based dye-sensitized fiber solar cells with a Pt-nanotube hybrid yarn as counter electrode and achieved a power conversion efficiency of 4.85% under standard illumination (AM1.5, 100 mW/cm(2)), comparable to the same type of fiber cells with a Pt wire electrode (4.23%). Adsorption of Pt nanoparticles within a porous nanotube yarn results in enhanced Pt-electrolyte interfacial area and significantly reduced charge-transfer resistance across the electrolyte interface, compared to a pure nanotube yarn or Pt wire. Our porous Pt-nanotube hybrid yarns have the potential to reduce the use of noble metals, lower the device weight, and improve the solar cell efficiency.


Assuntos
Fontes de Energia Elétrica , Nanotubos de Carbono/química , Platina/química , Energia Solar , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...